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Abstract. The quantization of linearly polarized light in an ideal optical cavity with moving
boundaries is re-examined. The mathematical results of the earlier study by Moore are obtained
using more conventional techniques. In contrast to Moore, it is shown that the theory does
possess a Hamiltonian and a Schrödinger picture when any suitable Lagrangian coordinate
system is chosen. It is demonstrated that the quantum, as well as the classical, physics is
independent of the choice of Lagrangian coordinate system.

1. Introduction

The quantization of the electromagnetic field in an ideal optical cavity with moving
boundaries was first discussed by Moore [1] in 1970, and his treatment forms the basis
for current work. The primary field of interest is now Unruh radiation, in this context the
creation of photons from the vacuum by the movement of the cavity mirrors [2–4]. Other
fields involving similar systems include the Casimir and vacuum radiation pressure effects
[5–7], interferometry in gravity wave detection [8], and laser physics [1, 9].

Moore’s quantization method involves introducing a symplectic structure on the space of
classical solutions [1, 2] and it is not immediately clear how this relates to more conventional
techniques. Moore also claims that the system has no Hamiltonian and no Schrödinger
picture, which upon closer examination is not entirely correct, as we will demonstrate. In
this paper we will quantize the moving-mirror cavity using the usual Lagrangian procedure
in a suitable coordinate system and show that the quantization does not essentially depend
on the choice of coordinate system. We will then independently construct thepn and qn

quantum operators used in Moore’s work and show that they have the properties required
of them.

2. Classical theory

We will consider an electric field polarized in thez direction in a one-dimensional cavity
with perfect mirrors atx = 0 andx = q(t). The classical wave equation is [1, 2]

∂2A

∂t2
= ∂2A

∂x2
(1)

with boundary conditions

A(0) = A(q(t)) = 0. (2)
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We will generalize this slightly to include the case, examined by Law [4], in which there is
a time- and space-dependent dielectric within the moving-mirror cavity. The wave equation
is now

∂

∂t

[
ε(x, t)

∂A

∂t

]
= ∂2A

∂x2
(3)

and the Lagrangian is

L = 1

2

∫ q(t)

0
dx

[
ε(x, t)

(
∂A

∂t

)2

−
(

∂A

∂x

)2
]

. (4)

3. Quantum theory

The coordinate systemA(x, t) is unsuitable for the quantization of the electromagnetic
field, because theA(x, t) do not represent degrees of freedom for all timest . It is essential
therefore to transform to a suitable coordinate systemB(y, t) where the boundary conditions
are fixed, i.e.

B(0, t) = B(L, t) = 0. (5)

As we will demonstrate, in this new coordinate system there is a Hamiltonian and an
associated Schrödinger picture. Although these depend on the choice of coordinates, the
Heisenberg picture, and hence the actual physics of the system, do not.

Note that we are not considering a general or special relativistic coordinate
transformation, only a transformation of the Lagrangian coordinates. Although the time
t is unchanged by the transformation it is more general than that considered previously
[10]. Other work concerning Unruh radiation [10, 11] suggests that quantum physics may
be changed by coordinate transformations which affect bothx and t .

We take a well-behaved coordinate transformation

B(y, t) = A(x(y, t), t) (6)

εB(y, t) = ε(x(y, t), t) (7)

where

x(0, t) = 0 (8)

x(L, t) = q(t) (9)

for all t .
Formally, we will requirex(y, t) to be strictly increasing iny for constantt and

continuous in bothy and t . The first derivatives ofx must exist at least piecewise and be
bounded (though not necessarily be continuous). It is convenient for simplicity to assume
thatx is differentiable everywhere to second order, although this is not strictly necessary if
x is treated as a generalized function.

It is well known that the classical physics derived from the Lagrangian are unaffected
by such a coordinate transformation. We will now show that this is also true of the quantum
physics.

On using the chain rule we have
∂B

∂y
= ∂A

∂x

∂x

∂y
(10)

and
∂B

∂t
= ∂A

∂x

∂x

∂t
+ ∂A

∂t
. (11)
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Similar relations for∂εB/∂y and∂εB/∂t allow us to write the system Lagrangian

L = 1

2

∫ q(t)

0
dx

[
ε

(
∂A

∂t

)2

−
(

∂A

∂x

)2
]

as

1

2

∫ L

0
dy

{
εB

(
∂B

∂t

)2
∂x

∂y
− εB

{
∂B

∂t
,
∂B

∂y

}
∂x

∂t
+

(
∂B

∂y

)2
[
εB

(
∂x

∂t

)2

− 1

] (
∂x

∂y

)−1
}

where{O1, O2} is the anticommutatorO1O2 + O2O1.
This results in a canonical momentum

5B = δL
δḂ

= εB

∂B

∂t

∂x

∂y
− εB

∂B

∂y

∂x

∂t
= ε

∂A

∂t

∂x

∂y
(12)

and hence a canonical commutation relation

[B(y, t), 5B(y0, t)] = iδ(y − y0) = i
∂x

∂y
δ(x(y, t) − x(y0, t)) (13)

or, in terms ofA,[
A(x(y, t), t), ε

∂A

∂t
(x(y0, t), t)

]
= iδ(x(y, t) − x(y0, t)). (14)

The Hamiltonian for this particular coordinate system is given by

HB = 1

2

∫ L

0

{
5B,

∂B

∂t

}
dy − L

= 1

2

∫ L

0
dy

{
εB

(
∂B

∂t

)2
∂x

∂y
−

(
∂B

∂y

)2
[
εB

(
∂x

∂t

)2

− 1

] (
∂x

∂y

)−1
}

(15)

and then substituting

∂B

∂t
= ε−1

B 5B

(
∂x

∂y

)−1

+ ∂B

∂y

(
∂x

∂y

)−1
∂x

∂t
(16)

gives

HB = 1

2

∫ L

0
dy

(
∂x

∂y

)−1
{

ε−1
B 52

B +
{
5B,

∂B

∂y

}
∂x

∂t
+

(
∂B

∂y

)2
}

.

As a consistency check, we will calculate the evolution ofB:

∂B

∂t
(y0, t) = i[HB, B(y0, t)]

=
∫ L

0
dy

(
∂x

∂y

)−1 {
ε−1
B δ(y − y0)5B + δ(y − y0)

∂B

∂y

∂x

∂t

}
(17)

so

∂B

∂t
= ε−1

B 5B

(
∂x

∂y

)−1

+ ∂B

∂y

(
∂x

∂y

)−1
∂x

∂t
(18)

which agrees with (16).
The evolution of5B is given by

∂5B

∂t
(y0, t) = i[HB, 5B(y0, t)]

= −
∫ L

0
dy

(
∂x

∂y

)−1 {
δ(1)(y − y0)

∂B

∂y
+ δ(1)(y − y0)5B

∂x

∂t

}
(19)
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and so

∂5B

∂t
= ∂

∂y

[(
∂x

∂y

)−1
∂B

∂y
+

(
∂x

∂y

)−1

5B

∂x

∂t

]

= ε
∂A

∂t

∂2x

∂y∂t
+ ∂2A

∂x2

∂x

∂y
+ ε

∂2A

∂x∂t

∂x

∂y

∂x

∂t
+ ∂ε

∂x

∂A

∂t

∂x

∂y

∂x

∂t
(20)

which from (12) should equal

∂5B

∂t
= ∂

∂t

(
εB

∂B

∂t

∂x

∂y
− εB

∂B

∂y

∂x

∂t

)
= ε

∂A

∂t

∂2x

∂y∂t
+ ε

∂2A

∂x∂t

∂x

∂y

∂x

∂t
+ ε

∂2A

∂t2

∂x

∂y
+ ∂ε

∂x

∂A

∂t

∂x

∂t

∂x

∂y
+ ∂ε

∂t

∂A

∂t

∂x

∂y
. (21)

From (20) and (21) we can determine the evolution equation in terms of the original
coordinate system:

∂2A

∂x2
= ε

∂2A

∂t2
+ ∂ε

∂t

∂A

∂t
(22)

which agrees with (3).
We can see that both the evolution of the system and the canonical commutation relation

are independent of the coordinate system chosen.

4. Constructing pn and qn

In this section we directly construct the quantum operatorspn andqn used in previous work
and show that they have the properties attributed to them. These operators appear naturally
in the abstract quantization used by Moore [1, 2] and are extremely useful in determining
the quantum behaviour of the cavity given classical solutions.

For convenience, we will now denote differentiation byt with a dot and differentiation
by x with a prime. As in the previous section, quantum operators will be denoted only by
context.

Following Sarkar [2] we introduce the bilinear operator

ω(A1, A2) =
∫ q(t)

0
dx ε(x, t){Ȧ1(x, t)A2(x, t) − A1(x, t)Ȧ2(x, t)} (23)

whereA1 andA2 are solutions to the wave equation in the cavity.ω is independent of time
t because

ω̇(A1, A2) =
∫ q(t)

0
dx {A′′

1(x)A2(x) + εȦ1(x)Ȧ2(x) − εȦ1(x)Ȧ2(x) − A1(x)A′′
2(x)}

= [A′
1(x)A2(x) − A1(x)A′

2(x)]x=q(t)

x=0

= 0. (24)

A1 andA2 can be either classical wavefunctions or the quantum operators.
We will choose classical solutionsun(x, t) andvn(x, t) such that

ω(un, um) = ω(vn, vm) = 0 (25)

ω(un, vm) = δnm (26)

and any solutionA(x, t) can be written

A(x, t) =
∑

n

(αnvn(x, t) − βnun(x, t)). (27)
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It is not particularly difficult to show that such solutions can always be constructed.
If we consider the solution with initial conditionA(x, t0) = 0, Ȧ(x, t0) =

−ε−1(x, t0)δ(x − x0) and chooseαn, βn as in (27), then

αm = −ω(A, um) =
∫

dx δ(x − x0)um(x, t0) = um(x0, t0) (28)

βm = −ω(A, vm) =
∫

dx δ(x − x0)vm(x, t0) = vm(x0, t0) (29)

so

0 =
∑

n

(un(x0, t)vn(x, t) − vn(x0, t)un(x, t)) (30)

ε−1(x, t)δ(x − x0) =
∑

n

(vn(x0, t)u̇n(x, t) − un(x0, t)v̇n(x, t)). (31)

We now define operators

pn = −ω(A, un) (32)

qm = −ω(A, vm). (33)

We relatep andq to A using (30) and (31):

∑
n

(pnvn(x0, t) − qnun(x0, t)) =
∑

n

∫ q(t)

0
dx ε(x, t){−Ȧ(x, t)un(x, t)vn(x0, t)

+A(x, t)u̇n(x, t)vn(x0, t) + Ȧ(x, t)vn(x, t)un(x0, t)

−A(x, t)v̇n(x, t)un(x0, t)}
= A(x0, t). (34)

The canonical relations forp andq are then

[pn, qm] = [ω(A, un), ω(A, vm)]

=
∫

dx dx ′ ε(x)ε(x ′){[Ȧ(x), Ȧ(x ′)]un(x)vm(x ′) − [Ȧ(x), A(x ′)]un(x)v̇m(x ′)

−[A(x), Ȧ(x ′)]u̇n(x)vm(x ′) + [A(x), A(x ′)]u̇n(x)v̇m(x ′)}
= − iω(un, vm)

= − iδnm. (35)

5. Conclusion

We have shown that the ideal moving mirror cavity can be quantized in a conventional
way when any appropriate transformation of Lagrangian coordinates is made, and that the
quantum physics derived is independent of the specific choice of these coordinates. Any
such quantization possesses a Hamiltonian which acts as the generator of time displacement
in the usual way.

Also, we have shown that the canonical quantum operators introduced by Moore are
consistent with this procedure. Consequently physical predictions given in [2] and [3] are
unchanged.
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